

MARKSCHEME

MAY 2016

MYP MATHEMATICS EXTENDED

ON-SCREEN EXAMINATION

24 pages

This markscheme is **confidential** and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

The markscheme may make use of the following abbreviations:

RM Assessor has the following annotations that should be used to award marks:

A0 only use to award a zero mark for an answer that has no merit e.g. awarded for the candidate that has a wrong answer with no working

NR only use when the candidate has not made any response also stamp the response with

Marks awarded by stamping the tick

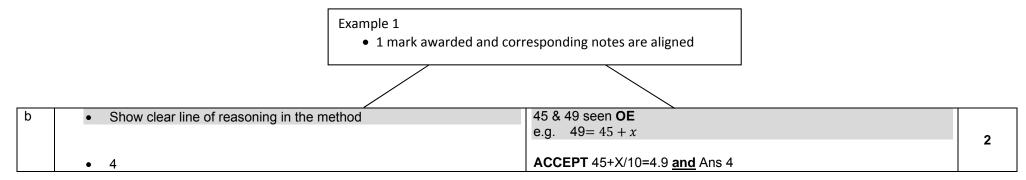
SEEN

Seen; must be stamped on all blank response areas and on concatenated responses

Bullet notation means award 1 mark – see example 1 below

ECF Marks that can be awarded as error carried forward from previous results in the question BOD Benefit of the doubt

MR misread


NWS no working shown

 \boldsymbol{SC} special case

OE or equivalent

WTTE or words to that effect

AG Answer given

Error Carried Forward (ECF) Marks

Errors made at any step of a solution affect all working that follows. In general, Error Carried Forward (ECF) marks are awarded after an error.

- a) **ECF** applies from one part of a question to a subsequent part of the question and also applies within the same part.
- b) If an answer resulting from **ECF** is inappropriate (*eg*, negative distances or sinx > 1) then subsequent marks should not be awarded.
- c) If a question is transformed by an error into a simpler question then ECF may not be fully awarded.
- d) To award ECF marks for a question part, there must be working present for that part.
- e) ECF is only applied to working which is correct. This means that all working subsequent to an error must be checked for accuracy.
- f) A misread (MR) is an error. ECF is normally awarded.

General points

- a) As this is an international examination, accept all alternative forms of notation, for example 1.9 and 1,9 or 1 000 or 1.000. However DO NOT ACCEPT incorrect mathematical notation e.g x² for x² unless noted otherwise in the MS.
- b) Ignore further working after a correct answer **unless** it indicates a lack of mathematical understanding **i.e. if the further working contradicts the correct answer**, then the last mark cannot be awarded.
- c) Where candidates have written two solutions to a question, mark the response that deserves more marks.
- d) In the markscheme, equivalent examples of numerical and algebraic forms or simplified answers will generally be written in the notes preceded

by **OE** or equivalent e.g.
$$\frac{1}{2}$$
 or 1/2 or $1 \div 2$ and $\frac{x}{2} x/2$ or $x \div 2$

- e) In the markscheme, information provided in brackets indicate detail that may be seen in a candidate response but is not necessary to award the marks.
- f) Special case marks **SC** can be allocated instead of but not in addition to the marks prescribed in the markscheme.

Questions marked using Holistic markscheme in task 3 questions.

Some questions in the markscheme are indicated to be marked holistically. In these questions follow the following procedure to award the marks:

- 1) Best-fit the work in a certain band by taking an overview of the first two columns, the strand and the specified criteria.
- 2) Use best judgement to award the work the specific mark within the band; whether in lower, middle (if appropriate), or highest.

	Answers	Notes	Total
а	• <i>x</i> = 4		1
b	$\begin{pmatrix} 4\\4 \end{pmatrix}$	Accept (4,4) or $p = 4$ and $q = 4$	1
С	• y axis	Must be correct within tolerance of half a square Accept no label on D	1
d	• $4 \times -4 + 4 \times 4$ or vector format $\begin{pmatrix} 4 \\ 4 \end{pmatrix} \begin{pmatrix} -4 \\ 4 \end{pmatrix}$ • $2 0$	• ¹ Their answer (b) and $\begin{pmatrix} 4 \\ 4 \end{pmatrix}$ which is given OE • ² ECF for correct multiplication of any two vectors	2
e	explanation that mentions 90° or perpendicular	ECF for correct multiplication of any two vectors ECF could be awarded for a correct comment on their product e.g. correctly state the angle is acute/obtuse. For example the candidate says : "It allows you to find the angle between the vectors" "it is the cosine of the angle between the vectors" "the angle is X i.e. they correctly find their angle"	1

2	a	 ¹ 1st mark for two from the points below ² 2nd mark for four from the points below Correct comment comparing median or LQ or UQ or min or max Correct comment comparing IQR or range Correct values of median or LQ or UQ or min or max Correct values of IQR or range 	A comment for comparison would have higher or lower or same in both countries or WTTE Any reference to mode e.g. "most/usually shoe sizes" is incorrect Accept use of average for the median Accept values of IQR given as (LQ-UQ) Accept values of range given from min to max SC If there is not enough comments or correct values but the candidate states: that the shoes sizes in Brazil are bigger than in Egypt WTTE: award 1 mark	2
	b	 ¹ one multiplication correct ² second multiplication and addition shown ³ correct answer 0.08 	 ¹ OE 6 % or 0.06 seen or 2 % or 0.02 ² OE 0.06+0.02 ³ OE 0.08 without working award 2 marks 	3
	С	• $P(B/D) = \frac{P(B \cap D)}{P(D)}$ • $\frac{0.4 \times 0.05}{\text{their } 0.08}$ • $\frac{1}{4}$ OE e.g. 0.25	• ¹ Use of conditional probability formula • ² Accept their 0.02/ their 0.08 ECF Note: Formula at • ¹ can be implied All probabilities must be less than 1 • ³ $\frac{1}{4}$ OE without working: award 2 marks	3

3	а	•1 $f \circ g(x) = \frac{x+3-2}{3(x+3)-11}$ •2 $= \frac{x+3-2}{3x+9-11}$	• ¹ Substitutes x + 3	
		• ² = $\frac{x+3-2}{3x+9-11}$	• ² Opens out bracket	2
		$=\frac{(x+1)}{(3x-2)} \qquad \mathbf{AG}$	Note: if they use $g \circ f$: award 0 marks	
	b	$\bullet^1 3yx - 2y = x + 1$	• ¹ Changes $f \circ g$ fog to y and cross multiplies	
		• ² $3yx - x = 2y + 1$	• ² x terms to same side	
		• ³ $x(3y-1) = 2y+1$	• ³ Taking x (or y if candidate exchanged them) as common factor	
		$\bullet^4 x = \frac{2y+1}{3y-1}$	• ⁴ Writing x in terms of y	
		•5 $(f \circ g)^{-1}(x) = \frac{2x+1}{3x-1}$,	• ⁵ Exchanging x and y may be seen earlier	6
		•6 $x \neq \frac{1}{3}$	• ⁶ The domain can be written differently as $x \in \mathbf{R} \neq \{\frac{1}{3}\}$ or R - $\{1/3\}$	
			Note: Some working may be implied. Note: If an error makes the working easier full ECF cannot be awarded	
			$(f \circ g)^{-1}(x) = \frac{2x+1}{3x-1}$, with no working : award 4 of first 5 marks	

		Alternative method		
3	b	$\bullet^1 y = \frac{x+1}{3x-2}$	• ¹ Changes $(f \circ g)(x)$ to y	
		$\bullet^2 \frac{x+1}{3x-2}$	• ² Divides of the terms	
		• ³ $h = \frac{2}{3}$ and $k = \frac{1}{3}$ or $y = \frac{5/9}{x - 2/3} + \frac{1}{3}$	• ³ Recognises h and k	
		•4 new $h = \frac{1}{3}$	• ⁴ Puts <i>h</i> instead of <i>k</i>	
		• ⁵ placing 1/3 for <i>h</i> or $y = \frac{5/9}{x-1/3} + \frac{2}{3}$	• ⁵ Puts <i>k</i> instead of <i>h</i>	
		• ⁶ Dom : $x \neq \frac{1}{3}$	• ⁶ Domain can be written differently	

4	•1 $r^2 = 2^2 + 2^2$ or sin45 = 2/r OE	Accept the use of decimals in their working. The final answer must be exact. See note at mark • ⁹ • ¹ Correct use of Pythagoras or trigonometry	
	• ² (<i>r</i> =)√8	• ² $\sqrt{8}$ SEEN Without working award 1 mark from • ¹ and • ²	
	• ³ height of cone 4	• ³ finds height of cone (may be seen at any stage or implied)	
	• ⁴ $(Vcylinder =)\pi \times \text{their } r^2 \times 26$	• ⁴ Substitutes in formula	
	•5 $(v =)208\pi$	• ⁵ 208 π SEEN Without working award 1 mark from • ⁴ and • ⁵	
	• ⁶ (<i>Vcone</i> =) $\frac{1}{3}\pi \times \text{their } r^2 \times 4$	• ⁶ Substitutes in formula	9
	$Vcone =) \frac{32}{3}\pi$	• ⁷ 32 π /3 SEEN Without working award 1 mark from • ⁶ and • ⁷	-
	• ⁸ their cylinder + their cone	• ⁸ Adding their two volumes. May be implied.	
	•9 $\frac{656\pi}{3}$	• ⁹ Answer must be given in terms of π . Do not award • ⁹ for an answer that is not exact.	
		SC: for the candidates that use $r = 2$ correctly: award 7 marks See below answers for this SC $(Vcylinder =)208\pi$	
		$(Vcone =)\frac{32}{3}\pi$	
		$(Total V =) \frac{656\pi}{3}$	

а	• ¹ crosses at 0 and 30 or a is a distance travelled along the x-axis _{•2} $x = 0$ or $x = a$	• ¹ or when the ball is at 30 the height is 0 OE e.g. substitutes (30, 0)	2
b	• ¹ the maximum height occurs at $x = 15$ • ² $h(15) = 9 \text{ m}$	 ¹ Can be seen as substitution in the equation ² 9 with no working award 1 mark 	2
С	 •¹ substitute x = 26 •² h = 4.16 •³ 4.16 > 3 m therefore SC ore or yes 	 •² 4.16 without working: award 1 mark •³ 4.16 > 3 m, without working award 2 marks 	3
d	• $\frac{x(30-x)}{25}$ • $x(30-x) > 75$ or $x^2 - 30x - 75 < 0$ this should be +75	 •¹ sets up inequation •² cross multiplies is minimum for the mark 	
	$\cdot^{3} x = \frac{30 \pm \sqrt{(-30)^{2} - 4(1)(75)}}{2}$	• ³ substitutes into quadratic formula	5
	•4 $(x=)27.2$ and $(x=)2.8$	 ⁴ finds 2 roots or estimates from the graph in the range 2<x<4 26<x<28="" and="" award:<br="">1 mark from the first four bullets</x<4> 	
	• ⁵ 27.2–2.8=24.4	 ⁵ subtracts to find the distance or ECF correctly subtracts their estimated values 	

Task 2

	Answers	Notes	Total
6 a	the values double	or r=2	1
t	 •¹ evaluates 3520 •² because the values are above 20 and below 20 000 	3520 must be seen Accept "because 20< their A<20 000" OE Accept their 3520 is less than 20 000 Award 2 marks	2
c	• ¹ 1 term correct	•1 $F_n = F_0 \times 2^n$ award 1 mark	
	• ² both terms correct and multiplied	• ² Allow alternative fully correct formula	2
	$(F =)27.5^2 \times 2^n$	i.e. $55 \times 2^{n-1}$	
С	$\frac{1}{1} = \frac{F}{27.5} = 2^n$	• ¹ Rearrange	
	$\log_2 \frac{F}{27.5} = \log_2 2^n$	• ² Award 1 mark for $\log \frac{F_n}{27.5}$	3
	$n = \log_2 \frac{F}{27.5}$	• ³ Award 2 marks for $\frac{\log \frac{F_n}{27.5}}{\log_2 2}$ OE • ³ Correct answer without working: award 2 marks	
e	20100	• ³ Correct answer without working: award 2 marks Alternative method	
	$n = \log_2 \frac{28160}{27.5}$	• ¹ Continue the sequence	
	•1 27.5		2
	• ² $n = \log_2 1024 = 10$ yes as a whole value	• ² 10 seen and answer yes	

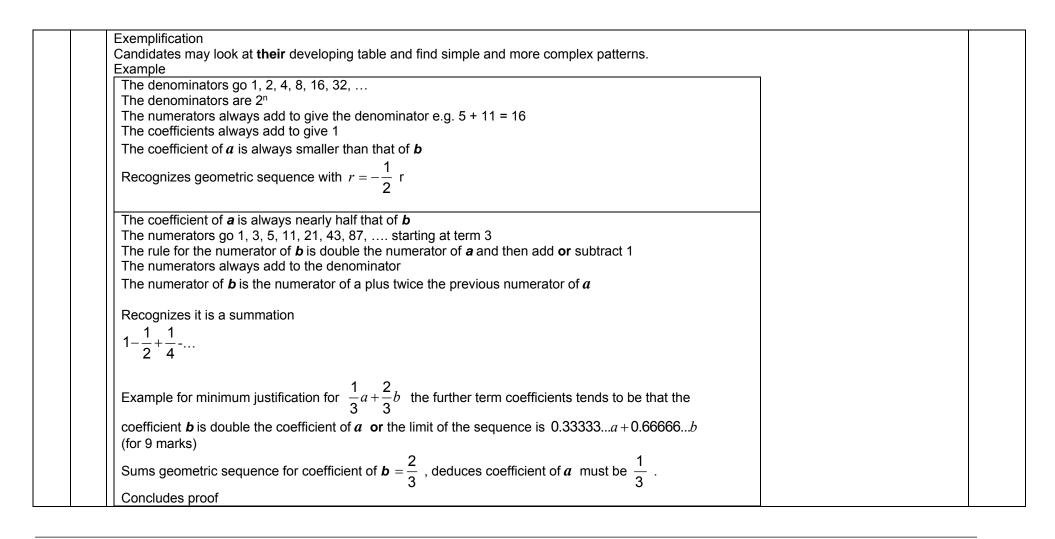
Aspect	1 mark	2 marks
IR: Identification of relevant information	One numerical factor mentioned from: – Octave (either width 194.5mm or	More than one numerical factor mentioned
	number of octaves 9)	
	 Keys (either width 23mm or number 63-66) 	
	– Arm span 1.65m	
	 Width of the piano as shown 148cm 	
	 Room/door size (eg. average room 	
	3x4)	
	 Human hearing 20HZ to 20 000HZ 	
CM: Calculation of measurements including width	Relevant calculation without mentioning gaps or extra width Examples:	Calculating width including gap or adding extra width Examples: 9 x 194.5 9 octaves and includes gap between keys
	Calculating the number of keys ie 52 + 2 x7 Accept answer is in the range 63-66	gap width: $(194.5 - 8x23)/7$ or 8 gaps = 1.5 /mm Key + its gap = 23 + 1.5=24.5
	OR Calculating the width of the piano keys (63-66)x 23	Hence width = $66x24.5 + 1.5$ (1 extra gap at the end) = 1618.5 mm OR Calculating extra width at the end in the original piano: In normal piano of width 1480mm there are 52 keys so extra width
	ACCEPT any reasonable value	both sides is 1480 – (52x24.5 + 1.5)=204.5 mm So the 66 keys piano needs to be 1618.5 mm + 204.5 = 1823mm
JD: Justification of degree of accuracy	Rounding used in any element	Justifies their choice of rounding
PD: Practicality of	Limited argument: Some examples:	Justified argument
new design	Not acceptable because people are used to	Some examples: Referring to price in anyway: Not acceptable because the added
	smaller pianos	octaves will increase the price of the machine and at the same time 2 octaves will not add much
	Acceptable as it will include all octaves that people can hear	Referring to the difference in width between normal piano and this one in any way: Acceptable because the added width will be only about 30 cm which can fit in a standard room width
QD: Quality of overall	Limited discussion	Balanced discussion
discussion (Holistic judgement on the		
whole response)		

matheMOEENGTZ0XXXX

7	а	$cos(73) = \frac{1.19}{s}$		
		• ² $s = \frac{1.19}{\cos(73)} (= 4.07 \text{ m}) \text{ AG}$		2
	b	•1 $\tan 73 = \frac{h}{1.19}$	OE with sine ratio	2
		• ² $(h=)$ 3.89(2314616cm)	• ² Correct answer without working award 1 mark only	
	С	• ¹ calculates angle 20		
		•2 $\frac{x}{\sin 20} = \frac{4.07}{\sin 53}$	• ² Use of sine rule	
		(x) = 1.74(3000362cm)	• ³ Calculate <i>x</i>	5
		•4 $w_2 = 55.3 - 2 \times (\text{their } 1.74 + 1.19)$ or their 2.93 from •3	Accept correct method using other lengths Alternative method for \cdot^1 \cdot^2 \cdot^3 \cdot^1 TAN = h/y uses TOH in right angle triangle	
		•5 $w_2 = 49.44$ (cm)	• ² y = tan/h cross multiply y = tan 53/3.89 their 3.89 • ³ y = 2.93 calculate	
	d	• ¹ attempt to work out another width ECF answer from (c)	•1 $w_3 = 49.44 - 2 \times (\text{their } 1.74 + 1.19)$	
		• ² $w_{g} = 55.3 - 2(8) \times (\text{their } 1.74 + 1.19)$	• ² 8 subtractions	3
		• ³ $w_9 = 8.42$ (cm)	• ³ Accept correct to 1 decimal place	
For c work		ates that do not apply the scale 1:100 treat as a misread MR on the fir	rst occasion, ECF can be awarded so candidates can gain full marks for sub	sequent
	<u> </u>	nswer for 7a) 7b) 7c) should be in the answer box. If there is not a value	ue in the answer box, award marks for final answers in the response box.	

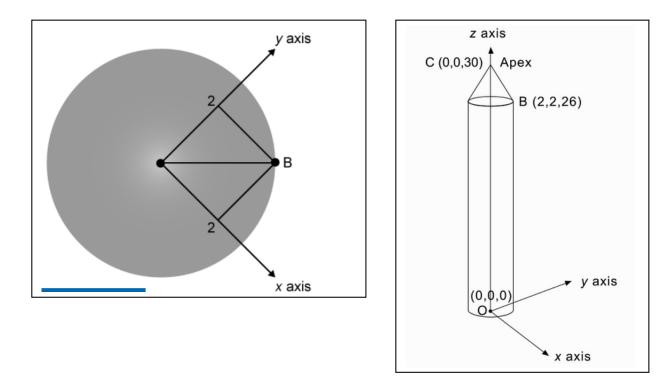
7	е	Aspect	1 mark	2 marks	
		Identify the relevant information required	Identify one of the following: Total measurements of the model Volume of the model Elements of the pyramid (temple and platform) the scale 1:100 Practicality of the size of the model	Identify more than one of the following: Total measurements of the model Volume of the model Elements of the pyramid (temple and platform) the scale 1:100 Practicality of the size of the model	
		Consider the degree of accuracy	Consideration the implication of the degree of accuracy on the given values. Examples: Recognizing that the lengths given to the nearest cm Recognizing that the angles given to one decimal place	Consideration the implication of the degree of accuracy on the calculated values. Examples: 2.7x9+6 =30.3 and not 30cm (2.5 instead of 2.7 we get 2.5x9+6=28.5 which is far from 30 or 3cm instead of 2.7 we get 3x9+6=33 which is far from 30) The width of first platform 55.3cm while it could be 55 and in this case 9 th platform 55-2x2x8=23 cm The width of 9 th platform could be 23 cm instead of 23.3 and in this case the 1 st platform 55cm Recognizing the difficulty of using a model with dimensions more accurate than nearest mm because of measuring tools available	6
		Comment on the validity	Comment not supported with evidence. Examples: The model will be close enough to look like the real pyramid	Comment supported with evidences. Examples: The model is practical and referring to overall size (height being about 30, width being about 50 cm) and can be carried/placed on a table easily	
			The model was calculated with correct mathematical steps so it is valid	The model is not very valid because the total height needs to be to the nearest mm like the height of the platform (27 mm). this will lead to inaccurate angles compared to real pyramid The erosion had an effect on the real pyramid and this is not taken into account in the model	

Task 3

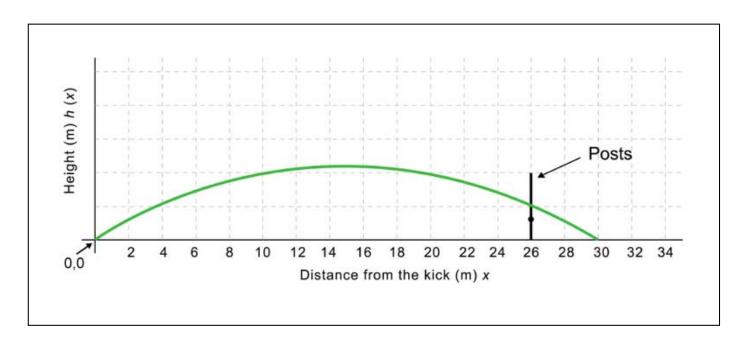

		Answers	Notes	Total
B	а	states the limit as 8	Correct limit	1
	b	 •1 two correct from p=5 q=6 r=7 •2 all three correct 	Award 1 mark for two correct values	2
	С	 ¹ any correct patterns ² in words give a rule e.g. divide column <i>a</i> by 3 and then add 2 	For example Column a increases by 3 or multiples of 3 Column L increase by 1 Do not accept column b are the same / all 3	2
	d	• $L = \frac{1}{3}a + b$ or $L = xc + 2$ • $L = \frac{1}{3}a + 2$	Any correct rearrangement Award 1 mark for each correct term	2

Strand	Holistic markscheme	Mark band
Discover patterns DIS:	Nothing from below	
Describe patterns DES:		0
Prove, verify, justify PVJ:		
Discover patterns DIS:	One prediction made	
Describe patterns DES:	Attempt to describe a pattern in words	1 - 3
Prove, verify, justify PVJ:		
Discover patterns DIS:	More than one prediction made	
Describe patterns DES:	A pattern correctly described in words	4 - 6
Prove, verify, justify PVJ:	Attempt to test their described pattern	
Discover patterns DIS:	More than one prediction made	
Describe patterns DES:	A pattern described as suggested general rule consistent with some of the findings	7 - 9
Prove, verify, justify PVJ:	Their general rule is tested correctly	
Discover patterns DIS:	More than one prediction made	
Describe patterns DES:	A pattern described as correct general rule consistent with findings	10 - 12
Prove, verify, justify PVJ:	A general rule is fully proved or verified and justified	
	n made with constant value for column A without any pattern description award 3 marks elation involving $a \ b$ and L	

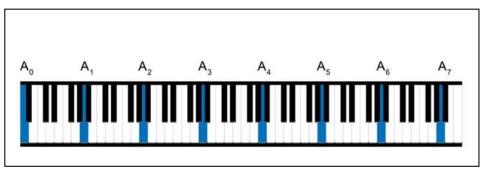
Exemplification	nonulato the t-bl-	using the size of				
The candidates can						
Candidates who restrict themselves to the pattern shown can only discover simple patterns e.g.						
or L in terms of row number $[L = n+3]$ and a in terms of row number $[a = 3(n+1)]$. Simple patterns can only gain credit up to Mark band 7–						
Candidates who use	the simulator to va	ary a and $m b$ will I	be able to described more complex patterns and find $\frac{1}{3}a + \frac{2}{3}b$.			
Using random value	s of <i>a</i> and b will pr	obably not prove	e useful. Some systematic approach will be more helpful. Here are some examples.			
			ey will soon see that multiples of 3 are better to use.			
	b	Ľ	1 '			
	0		-			
3	6	5	-			
6	6	6	-			
9	6	7	-			
12	6	8				
They might write dov	vn a rule and test i	t again using the	 e simulator.			
They might try $b = 0$						
	b	L				
	0		-			
3	0	1	-			
6	0	2	-			
9	0	3	-			
12	0	4	-			
	-	They might kee	a = 0			
u	v		-			
3	3	3	-			
3	6	5	-			
3	9	7	-			
3	12	9	-			
	14					
a	b	L				
a	U		-			
0	2		-			
0	3	2 4	-			
	9	6	-			
0			-			
0	12	8				

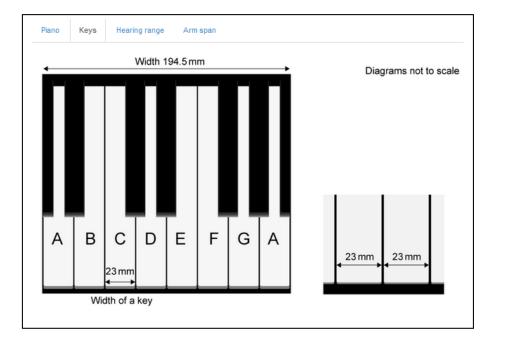

9 a	$ \cdot 1 \left(b + \frac{1}{2}a + \frac{1}{2}b \right) \div 2 $ $ \cdot 2 \left(\frac{1}{2}a + 1\frac{1}{2}b \right) \div 2 = \frac{1}{4}a + \frac{3}{4}b $ AG	2
b	•1 student generates a sequence •2 $\frac{3}{4}$ •3 $\frac{5}{8}$ •4 this sequence represents the coefficients of b	4

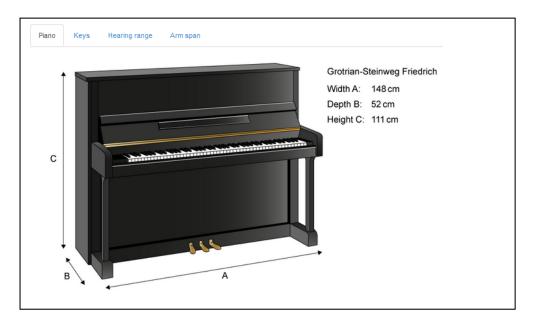
Strand	Holistic markscheme	Mark band	
Discover patterns DIS:	Nothing from below		
Describe patterns DES:		0	
Prove, verify, justify PVJ:			
Discover patterns DIS:	Attempt at patterns or rules		
Describe patterns DES:		1 - 2	
Prove, verify, justify PVJ:			
Discover patterns DIS:			
Describe patterns DES:	One or more patterns in words	3 - 5	
Prove, verify, justify PVJ:	Attempt to test one pattern		
Discover patterns DIS:			
Describe patterns DES:	One or more patterns in words, evidence of working to find a rule, any general rule	6 - 9	
Prove, verify, justify PVJ:	Evidence of testing the rule		
Discover patterns DIS:			
Describe patterns DES:	Two or more patterns or rules found, a general rule found that links to 8e	10 - 12	
Prove, verify, justify PVJ:	Attempt to prove or verify or justify a rule linking to 8e		
Discover patterns DIS:			
Describe patterns DES:	Patterns or rules found	13 - 14	
Prove, verify, justify PVJ:	Prove the rule from 8e or verify and justify the rule from 8e		

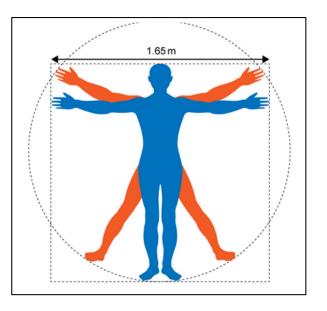


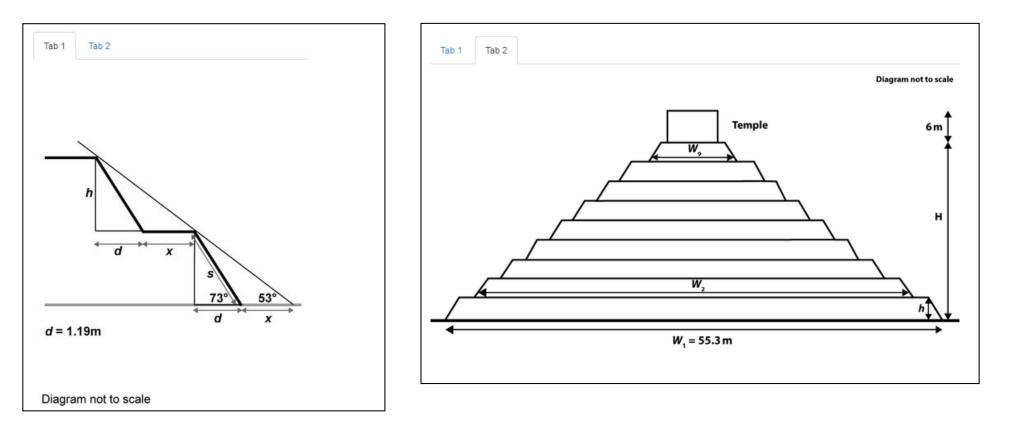
Appendices


Question 4


Question 5




Question 6


Humans can only hear between 20 and 20 000 Hertz.

Question 7

